
Approximate dynamic programming with (min;+)
linear function approximation for Markov decision

processes.

Chandrashekar Ly Shalabh Bhatnagar$

IISC-CSA-SSL-TR-2014-17

http://stochastic.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2014-17.pdf

Stochastic Systems Lab
Computer Science and Automation

Indian Institute of Science, India

March 2014

http://stochastic.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2014-17.pdf

Approximate dynamic programming with (min;+) linear
function approximation for Markov decision processes.

Chandrashekar Ly Shalabh Bhatnagar$

March 17, 2014

Abstract

Markov Decision Processes (MDP) is an useful framework to cast optimal sequential decision
making problems. Given any MDP the aim is to find the optimal action selection mechanism i.e.,
the optimal policy. Typically, the optimal policy (u�) is obtained by substituting the optimal value-
function (J�) in the Bellman equation. Alternately u� is also obtained by learning the optimal state-
action value function Q� known as the Q value-function. However, it is difficult to compute the exact
values of J� or Q� for MDPs with large number of states. Approximate Dynamic Programming
(ADP) methods address this difficulty by computing lower dimensional approximations of J�/Q�.
Most ADP methods employ linear function approximation (LFA), i.e., the approximate solution lies
in a subspace spanned by a family of pre-selected basis functions. The approximation is obtain via a
linear least squares projection of higher dimensional quantities and the L2 norm plays an important
role in convergence and error analysis. In this paper, we discuss ADP methods for MDPs based on
LFAs in (min;+) algebra. Here the approximate solution is a (min;+) linear combination of a set of
basis functions whose span constitutes a subsemimodule. Approximation is obtained via a projection
operator onto the subsemimodule which is different from linear least squares projection used in ADP
methods based on conventional LFAs. MDPs are not (min;+) linear systems, nevertheless, we show
that the monotonicity property of the projection operator helps us to establish the convergence of our
ADP schemes. We also discuss future directions in ADP methods for MDPs based on the (min;+)
LFAs.

1 Introduction
Optimal sequential decision making problems in science, engineering and economics can be cast in the
framework of Markov Decision Processes (MDP). Given an MDP, it is of interest to compute the optimal
value-function (J� 2 Rn) and/or the optimal-policy(u�), or Q� 2 Rn�d known as the Q value-function
which encodes both J� and u�. The Bellman operator and Bellman equation play a central role in
computing optimal value-function (J� 2 Rn) and optimal policy (u�). In particular, J� = TJ� and
Q� = HQ�, where T : Rn ! Rn, H : Rn�d ! Rn�d are the Bellman and Q-Bellman operators
respectively. Most methods to solve MDP such as value/policy iteration (Bertsekas [2007]) exploit the
fact that J� and Q� are fixed points of the T and H .

yDept Of CSA, IISc chandrul@csa.iisc.ernet.in, $Dept Of CSA, IISc shalabh@csa.iisc.ernet.in

2

3

Most problems arising in practice have large number of states and it is expensive to compute exact
values of J�=Q� and u�. A practical way to tackle the issue is by resorting to approximate methods.
Approximate Dynamic Programming (ADP) refers to an entire spectrum of methods that aim to obtain
approximate value-functions and/or policies. In most cases, ADP methods consider a family of functions
and pick a function that approximates the value function well. Usually, the family of functions considered
is the linear span of a set of basis functions. This is known as linear function approximation (LFA)
wherein the value-function of a policy u is approximated as Ju � ~Ju = �r�. Here � is an n� k feature
matrix and r� 2 Rk (k << n) is the weight vector to be computed.
Given �, ADP methods vary in the way they compute r�. In this paper, we focus on ADP methods that
solve the following Projected Bellman equation (PBE),

�r� = �Tu�r
�; (1)

where � is the projection matrix, � = �(�>D�)�1�> and D is any positive definite matrix. Once can
show that (1) has a solution by showing that the projected Bellman operator (PBO) �Tu is a contraction
map in the L2 norm. Solving (1) only address the problem of policy-evaluation/prediction, and to address
the problem of control a policy improvement step is required. In order to guarantee an improvement in
the policy, the prediction error jjJu � ~Jujj1 needs to be bounded. Due to the use of linear least squares
projection operator �, we can bound only jjJu � ~JujjD, where jjxjjD = x>Dx. Consequently policy
improvement is not guaranteed and an approximate policy iteration scheme will fail to produce a conver-
gent sequence of policies. Thus the problems of prediction and control are addressed only partially. In
particular, convergence and performance bounds are unsatisfactory. Also there is no convergent scheme
using conventional LFAs that can approximate Q�.

The (min;+) algebra differs from conventional algebra, in that + and � operators are replaced by
min and + respectively. Similarly (max;+) algebra replaces + with max and � with +. It is known
that finite horizon deterministic optimal control problems with reward criterion are (max;+) linear trans-
formations which map the cost function to the optimal-value function. A lot of work has been done in
literature Akian et al. [2008], McEneaney et al. [2008], McEneaney and Kluberg [2009], Gaubert et al.
[2011] that make use of (max;+) basis to solve to compute approximate value-functions. However, in
the case of infinite horizon discounted reward MDP, due to the stochastic nature of the state evolution
the Bellman operator (T /H) is neither (max;+) nor (min;+) linear, which is a key difference from the
aforementioned works that apply (max;+) basis. The primary focus of the paper it so explore (min;+)
LFAs in ADP schemes as opposed to conventional LFAs. Our specific contributions in this paper are
listed below.

1. We argue that the Bellman operator arising in MDPs are neither (max;+)/(min;+) linear. We
justify our choice of (min;+) linear basis for value-function approximation in infinite horizon
discounted reward MDPs.

2. We show that the projected Bellman operator in the (min;+) basis is a contraction map in the L1
norm. This enables us establish convergence and error bounds for the ADP schemes developed in
this paper.

3. We develop a convergent ADP scheme called Approximate Q Iteration (AQI) to compute ~Q =
Q�. Thus we solve both prediction and control problems which was a shortcoming in ADP with
conventional LFAs.

4. We also present another convergent ADP scheme called Variational Approximate Q Iteration
(VAQI), which is based on the Variational or weak formulation of the PBE.

4

5. We present the error analysis of AQI and VAQI.

Since the main focus of this paper was to study ADP in (min;+) LFAs and the properties of the associated
PBE, we have left out details on algorithmic implementation and analysis of the computational efficiency.
Nevertheless, we present experimental results on random MDPs.

2 Markov Decision Processes
Markov Decision Processes (MDP) are characterized by their state space S, action space A, the reward
function g : S � A ! R, and the probability of transition from state s to s0 under action a denoted by
pa(s; s

0). The reward for selecting an action a in state s is denoted by ga(s). We consider MDP with
state space S = f1; 2; : : : ; ng and action set A = f1; 2; : : : ; dg. For simplicity, we assume that all actions
a 2 A are feasible in every state s 2 S. A policy is a map u : S ! A, and it describes the action selection
mechanism2. Under a policy u the MDP is a Markov chain and we denote its probability transition kernel
by Pu = (pu(i)(i; j); i = 1 to n; j = 1 to n). The discounted reward starting from state s following
policy u is denoted by Ju(s) and is defined as

Ju(s) = E[

1X
t=0

�tgat(st)js0 = s; u]: (2)

Here fstg is the trajectory of the Markov chain under u, and at = u(st); 8t � 0. We call Ju =
(Ju(s);8s 2 S) 2 Rn the value-function for policy u. The optimal policy denoted as u� is given by

u� = argmax
u2U

Ju(s); 8s 2 S: (3)

The optimal value function is then J�(s) = Ju�(s); 8s 2 S. The optimal value function and optimal
policy are related by the Bellman Equation as below:

J�(s) = max
a2A

(ga(s) + �

nX
s0=1

pa(s; s
0)J�(s0)); (4a)

u�(s) = argmax
a2A

(ga(s) + �

nX
s0=1

pa(s; s
0)J�(s0)): (4b)

Usually, J� computed is first and u� is obtained by substituting J� in (4b). One can also define the
state-action value-function of a policy u known as the Q value-function as follows:

Qu(s; a) = E[

1X
t=0

�tgat(st)js0 = s; a0 = a]; at = u(st)8t > 0: (5)

The optimal Q values obeys the Q Bellman equation given below:

Q�(s; a) = ga(s) + �
X
s0

p(s; s0)max
a0

Q�(s0; a0): (6)

2The policy thus defined are known as stationary deterministic policy (SDP). Policies can also be non-stationary and randomized.
However since there exists a optimal policy that is SDP (Puterman [1994]) we restrict our treatment to SDPs.

5

It is also known that (Bertsekas [2007]) J�(s) = max
a

Q�(s; a). The optimal policy can be computed as

u�(s) = argmax
a

Q�(s; a). Thus, in some cases it is beneficial to find Q� since it encodes both J� and

u�.

2.1 Basic Solution Methods
It is important to note that J� and Q� are fixed points of maps T : Rn ! R

n, H : Rn�d ! R
n�d

respectively defined as follows:

(TJ)(s) = max
a2A

(ga(s) + �

nX
j=1

pa(s; s
0)J(s0)); J 2 Rn: (7a)

(HQ)(s; a) = (ga(s) + �

nX
j=1

pa(s; s
0)max

a2A
Q(s0; a)); Q 2 Rn�d: (7b)

T and H are called the Bellman and Q-Bellman operators respectively. Given J 2 Rn; Q 2 Rn�d, TJ
and HQ are the ‘one-step’ greedy value-functions. We summarize certain useful properties of H in the
following Lemmas (see Bertsekas [2007] for proofs).

Lemma 1 H is a max-norm contraction operator, i.e., given Q1; Q2 2 Rn�d

jjHQ1 �HQ2jj1 � �jjQ1 �Q2jj1 (8)

Corollary 1 Q� is a unique fixed point of H .

Lemma 2 H is a monotone map, i.e., given Q1; Q2 2 Rn�dn� d is such that Q � HQ, it follows that
Q � Q�.

Lemma 3 Given Q 2 Rn�d, and k 2 R and 1 2 Rn�d a vector with all entries 1, then

H(Q+ k1) = HQ+ �k1: (9)

It is easy to check that Lemmas1, 2, 3 hold for T as well (Bertsekas [2007]).
Value iteration (VI) is the most basic method to compute J�=Q� and is given by

Jn+1 = TJn; (10a)
Qn+1 = HQn: (10b)

Iterations in (10) are exact methods, and the contraction property of the Bellman operator ensures that
Jn ! J� in (10a), Qn ! Q� in (10b) as n!1. They are also referred to as look-up-table methods or
full state representation methods, as opposed to methods employing function approximation. u� can be
computed by substituting J� in (4b). Another basic solution method is Policy Iteration (PI) presented in
Algorithm 1. VI and PI form the basis of ADP methods explained in the next section.

6

Algorithm 1 Policy Iteration

1: Start with any policy u0
2: for i = 0; 1; : : : ; n do
3: Evaluate policy ui by computing Jui .
4: Improve policy ui+1(s) = argmax

a
(ga(s) + �

X
s0

pa(s; s
0)Jui(s

0)).

5: end for
6: return un

3 Approximate Dynamic Programming in conventional LFAs
The phenomenon called curse-of-dimensionality denotes the fact that the number of states grows expo-
nentially in the number of state variables. Due to the curse, as the number of variables increase, it is hard
to compute exact values of J�=Q� and u�. Approximate Dynamic Programming (ADP) methods make
use of (4) and dimensionality reduction techniques to compute an approximate value-function ~J . Then ~J
can be used to obtain an approximate policy ~u which is greedy with respect to ~J as follows:

~u(s) = argmax
a

(ga(s) + �
X
s0

pa(s; s
0) ~J(s0)): (11)

The sub-optimality of the greedy policy is given by the following result.

Lemma 4 Let ~J = �r� be the approximate value function and ~u be as in (11), then

jjJ~u � J�jj1 � 2

1� �
jjJ� � ~J jj1 (12)

Proof: See Bertsekas [2007]. Thus a good ADP method is one that address both prediction (i.e., com-
puting ~J) and the control (i.e., computing ~u) problems with desirable approximation guarantees.
Linear function approximators (LFA) have been widely employed for their simplicity and ease of com-
putation. LFAs typically let ~J 2 V � Rn, where V is the subspace spanned by a set of preselected basis
functions f�i 2 Rn; i = 1; : : : ; kg. Let � be the n�k matrix with columns f�ig, and V = f�rjr 2 Rkg,
then the approximate value function ~J is of the form ~J = �r� for some r� 2 Rk. r� is a weight vector
to be learnt, and due to dimensionality reduction (k << n) computing r� 2 Rk is easier than computing
J� 2 Rn.
We now discuss popular ADP methods namely approximate policy evaluation (APE) and approximate
policy iteration (API), which are approximation analogues of VI and PI. APE and API are based on linear
least squares projection of higher dimensional quantities onto V .

3.1 Approximate Policy Evaluation
J�=Q� are not known and hence projecting them onto V is impossible. Nevertheless, one can use the
Bellman operator and linear least squares projection operator to write down a projected Bellman equation
(PBE) as below:

�r� = �Tu�r
� (13)

7

where � = �(�>D�)�1�> is the projection operator, D is any diagonal matrix with all entries strictly
greater than 0 and Tu is the Bellman operator restricted to a policy u and is given by

(TuJ)(s) = gu(s)(s) + �
X
s0

pu(s)(s; s
0)J(s0); J 2 Rn:

The approximate policy evaluation (APE) is the following iteration:

�rn+1 = �Tu�rn: (14)

The following Lemma 5 establishes the convergence of (14).

Lemma 5 If � = �(�>D�)�1�>, and D be a diagonal matrix with the ith diagonal entry being the
stationary probability of visiting state i under policy u, then �Tu is a contraction map with factor �.

Proof: Let Pu be the probability transition matrix corresponding to policy u. Then one can show that
(Bertsekas [2007]) for z 2 Rn and jjzjj2D = z>Dz, jjPuzjj2D � jjzjj2D. Also, we know that � is a
non-expansive map, because

jj�x��yjjD = jj�(x� y)jjD
� jj�(x� y)jjD + jj(I ��)(x� y)jjD
= jjx� yjjD

Then

jj�TJ1 ��TJ2jjD � jjTJ1 � TJ2jjD � �jjJ1 � J2jjD

Corollary 2 Then the iteration in (14) converges to �r� such that �r� = �Tu�r
�.

The error bound for �r� is given by

jjJu � �r�jjD � 1p
1� �2

jjJu ��JujjD; (15)

One is inclined to think that an approximation analogue of (10a) would yield an approximation to J�.
It is important to note that (14) only computes ~Ju because (14) contains Tu and not T . However, since
operator �T might not be a contraction map in the L2 norm, and Tu cannot be replaced by T in iteration
(14), and the PBE in (13).

3.2 Approximate Policy Iteration
Approximate Policy Iteration (Algorithm 2) tackles both prediction and control problems, by performing
APE and policy improvement at each step. The performance guarantee of API can be stated as follows:

Lemma 6 If at each step i one can guarantee that jj ~Ji�Jui jj1 � �, then one can show that lim
n!1

jjJui�

J�jj � 2��

(1� �)2
.

Note that the error bound required by Lemma 6 is in the L1 norm, whereas (15) is only in the L2

norm. So API cannot guarantee an approximate policy improvement each step which is a shortcoming.
Also, even-though each evaluation step (line 3 of Algorithm 2) converges, the sequence un; n � 0 is
not guaranteed to converge. This is known as policy chattering and is another important shortcoming of
conventional LFAs. Thus the problem of control is only partially addressed by API.

8

Algorithm 2 Approximate Policy Iteration (API)

1: Start with any policy u0
2: for i = 0; 1; : : : ; n do
3: Approximate policy evaluation ~Ji = �r�i , where �r�i = �Tui�r

�
i .

4: Improve policy ui+1(s) = argmax
a

(ga(s) + �
X
s0

pa(s; s
0) ~Ji(s

0)).

5: end for
6: return un

3.3 LFAs for Q value-function
To alleviate the shortcomings in API, it is then natural to look for an approximation method that computes
a policy in more direct fashion. Since we know that by computing Q� we obtain the optimal policy
directly, it is a good idea to approximate Q�. The PBE version of (10b) is a plausible candidate and the
iterations are given by,

�rn+1 = �H�rn: (16)

The above scheme will run into the following problems:

1. The H operator (7b) contains a max term, and it is not straightforward show that �H is a con-
traction map in L2 norm, and consequently one cannot establish the convergence of iterates in
(16).

2. The issue pertaining to max operator can be alleviated by restricting H to a policy u, i.e., consider
iterations of form

�rn+1 = �Hu�rn+1: (17)

But iterates in (17) attempt to approximate Qu and not Q�, which means the problem of control is
unaddressed.

We conclude this section with the observation that the important shortcomings of conventional LFAs
related to convergence and error bound arise due to the L2 norm. The main result of the paper is that
ADP methods based on (min;+) LFAs don’t suffer from such shortcomings.

4 (min;+)/(max;+) non-linearity of MDPs
We introduce the Rmin semiring and show that MDPs are neither (min;+) nor (max;+) linear. The
Rmin semiring is obtained by replacing multiplication (�) by +, and addition (+) by min.

Definition 7

Addition: x� y = min(x; y)

Multiplication: x
 y = x+ y

9

Henceforth we use, (+;�) and (�;
) to respectively denote the conventional and Rmin addition and
multiplication respectively. Semimodule over a semiring can be defined in a similar manner to vector
spaces over fields. In particular we are interested in the semimodule M = R

n
min. Given u; v 2 Rn

min,
and � 2 Rmin, we define addition and scalar multiplication as follows:

Definition 8

(u� v)(i) = minfu(i); v(i)g = u(i)� v(i);8i = 1; 2; : : : ; n:

(u
 �)(i) = u(i)
 � = u(i) + �;8i = 1; 2; : : : ; n:

Similarly one can define the Rmax semiring which has the operators max as addition and + as multipli-
cation.

It is a well known fact that deterministic optimal control problems with cost/reward criterion are
(min;+)/(max;+) linear. However, the Bellman operator T in (7a) (as well as H in (7b)) corresponding
to infinite horizon discounted reward MDPs are neither (min;+) linear nor (max;+) linear systems. We
illustrate this fact via the following example.

Example 1 Consider an MDP with two states S = fs1; s2g, only one action, and a reward function g,
and let the probability transition kernel be

P =

�
0:5 0:5
0:5 0:5

�
(18)

For any J 2 R2 the Bellman operator T : R2 ! R2 can be written as

(TJ)(s) = g(s) + �� (0:5� J(1) + 0:5� J(2)) (19)

Consider vectors J1; J2 2 R2 such that J1 = (1; 2) and J2 = (2; 1) and J3 = max(J1; J2) = (2; 2).
Let g(1) = g(2) = 1, and � = 0:9, then, it is easy to check that TJ1 = TJ2 = (2:35; 2:35), and
TJ3 = (2:8; 2:8). However TJ3 6= max(TJ1; TJ2), i.e., TJ3 6= (2:35; 2:35). Similarly one can show
that T is neither a (min;+) linear operator.

�

5 (min;+) linear functions
Even-though the Bellman operator is not (min;+)/(max;+) linear, the motivation behind developing
ADP methods based on (min;+) LFAs is to explore them as an alternative to the conventional basis
representation. Thus the aim to understand the kind of convergence guarantees and error bounds that are
possible in the (min;+) LFAs.
Given a set of basis function f�i; i = 1; : : : ; kg, we define its (min;+) linear span to be V = fvjv =

�
 r
def
= min(�1 + r(1); : : : ; �k + r(k)); r 2 R

k
ming. V is a subsemimodule. In the context value

function approximation, we would want to project quantities in Rn
min onto V . The (min;+) projection

operator �M is given by (Akian et al. [2008], Cohen et al. [1996], McEneaney et al. [2008])

�Mu = minfvjv 2 V; v � ug; 8u 2M: (20)

10

We can write the PBE in the (min;+) basis

v = �MTv; v 2 V
�
 r� = minf�
 r� 2 Vj�
 r� � T�
 r�g (21)

Our choice is justified by the similarity in the structure of (21) and the linear programming (LP) formu-
lation of the infinite horizon discounted reward MDP.

min c>J (22)

s:t J(s) � g(s; a) + �
X
s0

pa(s; s
0)J(s0); 8s 2 S; a 2 A

Thus by making use of (min;+) LFAs and the projection operator �M we aim to find the minimum
upper bound to J�/Q�. A closely related ADP method is the approximate linear program (ALP) given by

min c>�r (23)

s:t �r(s) � g(s; a) + �
X
s0

pa(s; s
0)(�r)(s0); 8s 2 S; a 2 A

Though formulations (21) and (23) look similar, the former has its search space which is a subsemimodule
formed by a (min;+) linear span, whereas the latter has search space which is the intersection of subspace
and set of constraints. The two formulations differ in the algorithmic implementation and performance
bounds which we discuss in a longer version of the paper.

6 (min;+) LFAs for Q value approximation
We now present an ADP scheme bases on solving the PBE in (min;+) basis to compute approximate
Q� � ~Q. Our ADP scheme successfully addresses the two shortcomings of the ADP scheme in conven-
tional basis. First, we show establish contraction of the projected Bellman operator in the L1 norm. This
enables us to show that our recursion to compute ~Q converges. As discussed earlier, we can also obtain a
greedy policy ~u(s) = max

a

~Q(s; a). Secondly, we also present an error bound for the ~Q in the max norm
and as a consequence we can also ascertain the performance of ~u.
The PBE we are interested in solving is3

�
 r� = �MH�
 r� (24)

Since we want to approximate Q�, � is a nd� k feature matrix, and Q� � ~Q(s; a) = �(s�1)�d+a
 r�,
where �i is the ith row of �. The projected Q iteration is given by

�
 rn+1 = �MH�
 rn: (25)

The following results help us to establish the fact that that the operator �MH : Rn�d
min ! R

n�d
min is a

contraction map in the L1 norm.
3We did not consider �
 r� = �MT�
 r� since it approximates only J� and is superseded by (24) which computes

approximate Q� � ~Q. Thus (24) addresses both prediction and rol problems. We wish the remind the reader of the issues with
(24) in conventional basis discussed in section 3.3.

11

Lemma 9 For Q1; Q2 2 Rn�d
min , such that Q1 � Q2, then �MQ1 � �MQ2.

Proof: Follows from definition of projection operator in (20).

Lemma 10 Let Q 2 Rn�d
min , V1 = �MQ be its projection onto V and k 2 R, and 1 2 Rn�d be a vector

with all components equal to 1. The projection of Q+ k1 in V2 = �MQ+ k1.

Proof: We know that since V1 � Q, V1 + k1 � Q + k1, and from the definition of the projection
operator V2 � V1 + k1. Similarly V2 � k1 � Q, so V1 � V2 � k1.

Theorem 11 �MH is a contraction map in L1 norm with factor �.

Proof: Let Q1; Q2 2 Rn�d
min , define �

def
= jjQ1 �Q2jj1, then

�MHQ1 ��MHQ2 � �MH(Q2 + �1)��MHQ2

= �M (HQ2 + ��1)��MHQ2

= ��1: (26)

Similarly �MHQ2 ��MHQ1 � ��1, so it follows that jj�MHQ1 ��MHQ2jj1 � �jjQ1 �Q2jj1.

Corollary 3 The approximate Q iteration in (25) converges to a fixed point r�.

7 Variational formulation of PBE
The projection operator �M used in (16) is exact. Let v = �Mu, then for fwi 2 Rn

ming; i = 1; : : : ;m it
follows from the definition of �M that

w>i v � w>i u (27)

where in the (min;+) algebra the dot product x>y =
n

min
i=1

(x(i) + y(i)). Let W denote the nd�m test

matrix whose columns are wi. Now we shall define the approximate projection operator to be

�W
Mu = minfv 2 VjW>v �W>ug: (28)

The superscript in �W
M denotes the test matrix W . The iteration to compute approximate Q values using

�W
M is given by

�
 rn+1 = �W
MH�
 rn: (29)

Lemmas 9, 10, and Theorem 11 continue to hold if �M is replaced with �W
M . Thus by Corollary 3, we

know that (29) converges to an unique fixed point r�W such that �
 r�W = �W
MH�
 r�W .

Theorem 12 Let ~r be such that ~r = argmin
r
jjQ� ��
 rjj1. Let r� be the fixed point of the iterates in

(29), then

jjQ� � �
 r�jj1 � 2

1 + �
(jjQ� � �
 ~rjj1

+ jj�
 ~r ��W
M�
 ~rjj1) (30)

12

Proof: Let � = jjQ� � �
 ~rjj1, by contraction property of H (Lemma 1) we know that

jjHQ� �H�
 ~rjj1 � ��:

So have jj�
 ~r �H�
 ~rjj1 � (1 + �)�. Then

jj�
 ~r ��W
MH�
 ~rjj1 = jj�
 ~r ��W

M�
 ~rjj1
+ jj�W

M�
 ~r ��W
MH�
 ~rjj1

Now

�W
M�
 ~r ��W

MH�
 ~r � �W
M�
 ~r

��W
M (�
 ~r � (1 + �)�)

= (1 + �)�

Similarly �W
MH�
 ~r ��W

M�
 ~r � (1 + �)�, and hence

jj�
 ~r ��W
MH�
 ~rjj1 � (1 + �)�+ �; (31)

where � = jj�
 ~r ��W
M�
 ~rjj1. Now consider the iterative scheme in (29) with r0 = ~r, and

jjQ� � �
 r�jj1 = jjQ� � �
 r0 +�
 r0

� �
 r1 + : : :� �
 r�jj1
� jjQ� � �
 r0jj1 + jj�
 r0 � �
 r1jj1
+ jj�
 r1 � �
 r2jj1 + : : :

� �+ (1 + �)�+ � + �((1 + �)�+ �) + : : :

= �(
1 + �

1� �
+ 1) +

�

1� �

=
2�+ �

1� �

The term � in the error bound in Theorem 12 is the error due to the usage of �W
M . Thus for solution to

(24) � = 0.

8 Experiments
We test our ADP schemes on a randomly generated MDP with 100 states, i.e., S = f1; 2; : : : ; 100g,
and action set A = f1; : : : ; 5g. The reward ga(s) is a random integer between 1 and 10, and discount
factor � = 0:9. We now describe feature selection, where f�j ; j = 1; : : : ; kg; �j 2 Rn�d

min and f�i; i =
1; : : : ; ng; �i 2 R

k
min denote the columns and rows respectively of the feature matrix �. The feature

corresponding to a state-action pair (s; a) is given by �(s�1)�d+a. Let �x; �y be features corresponding
to state action pairs (sx; ax) and (sy; ay) respectively, then

< �x; �y >= �x(1)
 �y(1)� : : :� �x(k)
 �y(k): (32)

We desire the following in the feature matrix �.

13

0 20 40 60 80 100

70

80

90

State

D
is

co
un

te
d

C
os

t

Optimal and Approximate Value Functions

J�

~JEP
~JW

Figure 1: jjJ� � ~JEP jj1 = 6:47,jjJ� � ~JW jj1 = 6:35

1. Features �i should have unit norm, i.e., jj�ijj =< �i; �i >= 0, since 0 is the multiplicative
identity in the (min;+) algebra.

2. For dissimilar states-action pairs, we prefer < �x; �y >= +1, since +1 is the additive identity
in (min;+) algebra.

Keeping these in mind, we design the feature matrix � for the random MDP as in (33). For state-action
pair (s; a) let x = (s� 1)� d+ a, then the feature

�x(i) =

8><
>:

0 : ga(s) 2 [gmin +
(i� 1)L

k
; gmin +

(i)L

k
]

1000 : ga(s) =2 [gmin +
(i� 1)L

k
; gmin +

(i)L

k
];

8i = 1; : : : ; k: (33)

We use 1000 in place of +1. It is easy to verify that � in (33) has the enumerated properties. The
results are plotted in Figure 2. Here J� is the optimal value-function, ~JEP (s) = max

a

~QEP (s; a),

where ~QEP is the value obtained via the iterative scheme in (25) and subscript EP denotes the fact
that the projection employed in exact (�M). ~JW (s) = max

a

~QW (s; a), where ~QW is the value obtained

via the iterative scheme in (29) and subscript W denotes the fact that the projection employed is �W
M .

uEP (s) = argmax
a

~QEP (s; a) and uW (s) = argmax
a

~QW (s; a) are greedy policies and JuEP , JuW
are their respective value functions. ~Juarbt is the value function of an arbitrary policy, wherein a fixed
arbitrary action is chosen for each state.

14

0 20 40 60 80 100
80

82

84

86

88

90

State

D
is

co
un

te
d

C
os

t

Performance of optimal and greedy policies

J�

JuEP
JuW

Figure 2: jjJ� � JuEP jj1 = 2:61,jjJ� � JuW jj1 = 5:61, jjJ� � ~Juarbt jj1 = 40:49

15

References
Marianne Akian, Stéphane Gaubert, and Asma Lakhoua. The max-plus finite element method for solving

deterministic optimal control problems: basic properties and convergence analysis. SIAM Journal on
Control and Optimization, 47(2):817–848, 2008.

D.P. Bertsekas. Dynamic Programming and Optimal Control, volume II. Athena Scientific, Belmont,MA,
3 edition, 2007.

Guy Cohen, Stéphane Gaubert, and Jean-Pierre Quadrat. Kernels, images and projections in dioids. In
Proceedings of WODES96, pages 151–158, 1996.

Stephane Gaubert, William McEneaney, and Zheng Qu. Curse of dimensionality reduction in max-plus
based approximation methods: Theoretical estimates and improved pruning algorithms. In Decision
and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages
1054–1061. IEEE, 2011.

William M McEneaney and L Jonathan Kluberg. Convergence rate for a curse-of-dimensionality-free
method for a class of hjb pdes. SIAM Journal on Control and Optimization, 48(5):3052–3079, 2009.

William M McEneaney, Ameet Deshpande, and Stephane Gaubert. Curse-of-complexity attenuation in
the curse-of-dimensionality-free method for hjb pdes. In American Control Conference, 2008, pages
4684–4690. IEEE, 2008.

M.L. Puterman. Markov Decision Processes: Discrete Stochastic Programming. John Wiley, New York,
1994.

	Introduction
	Markov Decision Processes
	Basic Solution Methods

	Approximate Dynamic Programming in conventional LFAs
	Approximate Policy Evaluation
	Approximate Policy Iteration
	LFAs for Q value-function

	(min,+)/(max,+) non-linearity of MDPs
	(min,+) linear functions
	 (min,+) LFAs for Q value approximation
	Variational formulation of PBE
	Experiments

